合并方差

Published on7/29/2025
Created on 6/19/2022

By Chesium\mathsf{By\ Chesium} 2022-06-19 SS\mathbb{SS}

参考:均值和方差的计算(已知两样本标准差,求总体标准差)- CSDN nwpu061701 在其基础上添加了过程注释,简化了一部分化简步骤。


已知 x1,,xnx_1,\dots,x_n 的均值 xˉ\bar xy1,,ymy_1,\dots,y_m 的均值 yˉ\bar y,以及其分别的方差 σx2,σy2\sigma_x^2,\sigma_y^2。求 xxyy 总体的均值 zˉ\bar z 和方差 σz2\sigma_z^2

我们先分别写出 xˉ,yˉ,σx2,σy2\bar x,\bar y,\sigma_x^2,\sigma_y^2 的表达式:

xˉ=1ni=1nxiyˉ=1ni=1myiσx2=1ni=1n(xixˉ)21σy2=1ni=1m(yiyˉ)22\begin{aligned} \bar x&=\frac{1}{n}\sum_{i=1}^nx_i &\\ \bar y&=\frac{1}{n}\sum_{i=1}^my_i &\\ \sigma_x^2&=\frac{1}{n}\sum_{i=1}^n(x_i-\bar x)^2 &\qquad\boxed{1}\\ \sigma_y^2&=\frac{1}{n}\sum_{i=1}^m(y_i-\bar y)^2 &\qquad\boxed{2}\\ \end{aligned}

我们先来求均值 zˉ\bar z

zˉ=1n+m(i=1nxi+i=1myi)=nxˉ+myˉn+m\begin{aligned} \bar z&=\frac{1}{n+m}(\sum_{i=1}^nx_i+\sum_{i=1}^my_i)\\ &=\frac{n\bar x+m\bar y}{n+m} \end{aligned}

然后是方差 σz2\sigma_z^2

(n+m)σz2=i=1n(xizˉ)2+i=1m(yizˉ)23 (n+m)\sigma_z^2= \sum_{i=1}^n(x_i-\bar z)^2 +\sum_{i=1}^m(y_i-\bar z)^2\qquad\boxed{3}

3n1m2\boxed{3}-n\boxed{1}-m\boxed{2} 得:

(n+m)σz2nσx2mσy2=i=1n(xizˉ)2+i=1m(yizˉ)2i=1n(xixˉ)2i=1m(yiyˉ)2合并第一、三项和二、四项=i=1n[(xizˉ)2(xixˉ)2]+i=1m[(yizˉ)2(yiyˉ)2]使用平方差公式展开,合并同类项=i=1n(xizˉ+xixˉ)(xizˉxi+xˉ)+i=1m(yizˉ+yiyˉ)(yizˉyi+yˉ)=i=1n(2xizˉxˉ)(xˉzˉ)+i=1m(2yizˉyˉ)(yˉzˉ)将无关项从和式中移出,化简=(xˉzˉ)i=1n(2xizˉxˉ)+(yˉzˉ)i=1m(2yizˉyˉ)=(xˉzˉ)(2i=1nxinzˉnxˉ)+(yˉzˉ)(2i=1myimzˉmyˉ)=(xˉzˉ)(2nxˉnzˉnxˉ)+(yˉzˉ)(2myˉmzˉmyˉ)=n(xˉzˉ)(xˉzˉ)+m(yˉzˉ)(yˉzˉ)=n(xˉzˉ)2+m(yˉzˉ)2展开 zˉ,通分=n(xˉnxˉ+myˉn+m)2+m(yˉnxˉ+myˉn+m)2=n((n+m)xˉn+mnxˉ+myˉn+m)2+m((n+m)yˉn+mnxˉ+myˉn+m)2=n(mxˉmyˉn+m)2+m(nyˉnxˉn+m)2=m2n(xˉyˉn+m)2+mn2(yˉxˉn+m)2=(m2n+mn2)(xˉyˉn+m)2=mn(n+m)(xˉyˉ)2(n+m)2=mn(xˉyˉ)2n+m\begin{aligned} &(n+m)\sigma_z^2-n\sigma_x^2-m\sigma_y^2\\ =&\sum_{i=1}^n(x_i-\bar z)^2 +\sum_{i=1}^m(y_i-\bar z)^2 -\sum_{i=1}^n(x_i-\bar x)^2 -\sum_{i=1}^m(y_i-\bar y)^2\\ &\text{合并第一、三项和二、四项}\\ =&\sum_{i=1}^n[(x_i-\bar z)^2-(x_i-\bar x)^2] +\sum_{i=1}^m[(y_i-\bar z)^2-(y_i-\bar y)^2]\\ &\text{使用平方差公式展开,合并同类项}\\ =&\sum_{i=1}^n(x_i-\bar z+x_i-\bar x)(x_i-\bar z-x_i+\bar x) +\sum_{i=1}^m(y_i-\bar z+y_i-\bar y)(y_i-\bar z-y_i+\bar y)\\ =&\sum_{i=1}^n(2x_i-\bar z-\bar x)(\bar x-\bar z) +\sum_{i=1}^m(2y_i-\bar z-\bar y)(\bar y-\bar z)\\ &\text{将无关项从和式中移出,化简}\\ =&(\bar x-\bar z)\sum_{i=1}^n(2x_i-\bar z-\bar x) +(\bar y-\bar z)\sum_{i=1}^m(2y_i-\bar z-\bar y)\\ =&(\bar x-\bar z)(2\sum_{i=1}^nx_i-n\bar z-n\bar x) +(\bar y-\bar z)(2\sum_{i=1}^my_i-m\bar z-m\bar y)\\ =&(\bar x-\bar z)(2n\bar x-n\bar z-n\bar x) +(\bar y-\bar z)(2m\bar y-m\bar z-m\bar y)\\ =&n(\bar x-\bar z)(\bar x-\bar z) +m(\bar y-\bar z)(\bar y-\bar z)\\ =&n(\bar x-\bar z)^2 +m(\bar y-\bar z)^2\\ &\text{展开}\ \bar z\text{,通分}\\ =&n(\bar x-\frac{n\bar x+m\bar y}{n+m})^2 +m(\bar y-\frac{n\bar x+m\bar y}{n+m})^2\\ =&n(\frac{(n+m)\bar x}{n+m}-\frac{n\bar x+m\bar y}{n+m})^2 +m(\frac{(n+m)\bar y}{n+m}-\frac{n\bar x+m\bar y}{n+m})^2\\ =&n(\frac{m\bar x-m\bar y}{n+m})^2 +m(\frac{n\bar y-n\bar x}{n+m})^2\\ =&m^2n(\frac{\bar x-\bar y}{n+m})^2 +mn^2(\frac{\bar y-\bar x}{n+m})^2\\ =&(m^2n+mn^2)(\frac{\bar x-\bar y}{n+m})^2\\ =&mn(n+m)\frac{(\bar x-\bar y)^2}{(n+m)^2}\\ =&\frac{mn(\bar x-\bar y)^2}{n+m}\\ \end{aligned}

移项,使等式左边只留下我们需要求的方差 σz2\sigma_z^2

(n+m)σz2nσx2mσy2=mn(xˉyˉ)2n+m(n+m)σz2=nσx2+mσy2+mn(xˉyˉ)2n+mσz2=nσx2+mσy2+mn(xˉyˉ)2n+mn+m\begin{aligned} (n+m)\sigma_z^2-n\sigma_x^2-m\sigma_y^2 &=\frac{mn(\bar x-\bar y)^2}{n+m}\\ (n+m)\sigma_z^2 &=n\sigma_x^2+m\sigma_y^2 +\frac{mn(\bar x-\bar y)^2}{n+m}\\ \sigma_z^2&= \frac{n\sigma_x^2+m\sigma_y^2 +\frac{mn(\bar x-\bar y)^2}{n+m} }{n+m} \end{aligned}

综上所述:

zˉ=nxˉ+myˉn+mσz2=nσx2+mσy2+mn(xˉyˉ)2n+mn+m\begin{aligned} \bar z&=\frac{n\bar x+m\bar y}{n+m}\\ \sigma_z^2&= \frac{n\sigma_x^2+m\sigma_y^2 +\frac{mn(\bar x-\bar y)^2}{n+m} }{n+m} \end{aligned}

全文完。