MA1511 Note

Published on7/29/2025
Created on 10/11/2024

Mistakes

Redo Tasks

W1 Partial Derivatives

			z
			|*>x
			|  *-s
			|  *>t
			|
			|*>y
			   *-s
			   *>t

W2 Multiple Integrals

W3 Vector-Valued Functions

W4 Vector Fields

$ bf F tabtab space

W5 Infinite Series

two common types of Sequence

- Limit of a Sequence

- poly / poly : indet. form (inf/inf)

eval method: div the numer and denom by the highest power of variable

Some Standard Limit Results

1. limna1n=1a02. limnn1n=13. limnrn=0r(1,1)4. limn(1+an)n=eaaR\begin{align*} & 1.\ \lim_{ n \to \infty }a^{\frac{1}{n}}=1 & a\neq 0 \\ & 2.\ \lim_{ n \to \infty } n^{\frac{1}{n}}=1 \\ & 3.\ \lim_{ n \to \infty }r^n=0 & r\in(-1,1) \\ & 4.\ \lim_{ n \to \infty }\left(1+\frac{a}{n}\right)^n=e^a & a\in \mathbb{R} \end{align*}

application example:

limn(16n+1)9n=limn(16n+1)9(n+1)9=limn((1+6n+1)n+1)9limn(1+6n+1)9=e541=e54 \begin{align*} \lim_{ n \to \infty } \left( 1- \frac{6}{n+1} \right)^{9n} & =\lim_{ n \to \infty } \left( 1- \frac{6}{n+1} \right)^{9(n+1)-9} \\ & =\frac{\lim_{ n \to \infty } \left( \left( 1+\frac{{-6}}{n+1} \right)^{n+1} \right)^9}{\lim_{ n \to \infty } \left( 1+\frac{{-6}}{n+1} \right)^{9}} \\ & =\frac{e^{-54}}{1} \\ & =e^{-54} \end{align*}

Limit Laws

1. limncan±d=cA±d2. limnan±bn=A±B3. limnanbn=AB4. limnan/bn=A/BB,bn05. limnf(an)=f(A)limit exists\begin{align*} & 1.\ \lim_{ n \to \infty }ca_{n}\pm d=cA\pm d & \\ & 2.\ \lim_{ n \to \infty }a_{n}\pm b_{n}=A\pm B & \\ & 3.\ \lim_{ n \to \infty }a_{n}b_{n}=AB & \\ & 4.\ \lim_{ n \to \infty }a_{n}/b_{n}=A/B & B,b_{n}\neq0 \\ \\ & 5.\ \lim_{ n \to \infty }f(a_{n})=f(A) & \mathrm{limit\ exists} \\ \\ \end{align*}

Limit of geometric series

Two Convergence / divergence Tests

Power Series

Taylor Series & Maclaurin Series

![[Pasted image 20240920152825.png]]